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Abstract-The eflect of pulsating laser radiation. selectively absorbed by a buffer additive, on gaseous 
mixture burning in an ideal-mixing continuous-How reactor is studied in linear approximation. The relation 
is found between a resultant amplitude of system oscillations, frequency and outside effect amplitude. 
Resonance phenomena on a natural frequency and on frequency multiples of it are determined. It is shown 
that in the resonance vicinity on the natural frequency the amplitude- frequency response may be of 
both a crisis-free and hysteresis character with the amplitude of induced oscillations being proportional to 
the cube root of the outside effect amplitude. The results of analytical investigations are confirmed by a 

numerical solution of a non-linear problem. 

1. INTRODUCTION 

THE PROBLEM of the control of heat and mass transfer 
with exothermal chemical conversions, substantiation 
of the experiments on the simulation of various reac- 
tions necessitate finding adequate theoretical models 
and methods for their analysis to study laser heating 
dynamics of chemically active media. A theoretical 
investigation of the dynamics of ideal-mixing 
continuous-flow reactors [l-3], including that in a 
laser radiation field [46] with various types of the de- 
pendence of medium absorptivity on concentration 
and temperature. shows that, depending on the 
parameters, one, three or five stationary states or a 
self-oscillating mode are possible in the system. Physi- 
cal parameters of the energy source greatly affect the 
character of its interaction with an oscillatory non- 
linear system [7]. 

Possible responses of the system with burning and 
without laser radiation on the disturbances of tem- 
perature, concentration and mixture feed rate are 
studied numerically [8-IO]. It is shown that, depend- 
ing on the system Q-factor, the phenomena of res- 
onance, detector effects, synchronization or para- 
metric excitation are observed. 

The paper presents the results of approximate- 
analytical and numerical analysis of the effect of 
laser radiation periodic pulsations on oscillating 
burning of a gaseous mixture in an ideal-mixing con- 
tinuous flow-reactor. 

2. PROBLEM FORMULATION 

Heat and mass transfer with exothermal chemical 
conversions in the ideal-mixing continuous-flow reac- 
tor is considered within the framework of the zero- 
dimensional thermodiffusion model. It is assumed 
that a gaseous mixture flow rate is constant, the reac- 

tor walls arc impermeable and heat exchange with the 
environment occurs by the Newton law. The tem- 
perature dependence of the monomolecular reaction 
rate A + B obeys the Arrhenius law. Laser radiation 
propagates along the reactor axis through an optically 
thin layer of the gaseous mixture. It is assumed that 
laser radiation is absorbed by the buffer additive 
which does not participate in a chemical reaction. 

In the non-dimensional variables the process is 
described by the following heat and substance balance 
equations 

d0 
r>O: -= 

dr -(Peer+ Bi,,-)0-t Pe,,O,, + Bi,,d, 

+ QDac exp 
( > 

-i +F(l+Asinw~)~N,(O,(,). 

dc 
- = -(PPe,r+Le,,)(c-c,,) 
dr 

-Dacexp -i 
( > 

si N?(O,c). 

where 

T = 0: 0 = e,,, (’ = Gin, (1) 

Pe,, = 2(Pe+2), Lr,r = 4(Le,, - I), 

6Bi, . 
Bier = ~ 2+Bi,4:!Ji 

are the effective coefficients characterizing the reagent 
feed rate, mixing and heat exchange with the environ- 
ment; k,, E and (-AH) are the pre-exponential 
factor, activation energy, reaction thermal effect ; R is 
the universal gas constant; L and R. the length and 
radius of the reactor: t’ the mixture feed rate; i, c,,, 
a = i,,,/pc,,, D’, tl,. and p the coefficients of thermal 
conductivity, heat capacity, thermal diffusivity, 

1687 



I688 A. T. LUKYANOV er al. 

NOMENCLATURE 

a thermal diffusivity Greek symbols 
A amplitude UT heat transfer coefficient 

CP heat capacity (-AH) reactor thermal effect 
c weight fraction of initial substance 6 radiation absorption factor in the medium 
D’ mixing 1 thermal conductivity 
E activation energy P density 
F laser radiation intensity w frequency 
10 laser beam intensity WO natural frequency. 
ko pre-exponential factor 
L reactor length Subscripts 
r. laser radius ax axial direction 
R universal gas constant en reactor entrance 
Ro reactor radius r radial direction 
t time in initial 
T mixture temperature S stationary 
V mixture feed rate. 03 environment. 

mixing, heat transfer, and the density; lo and r. the 
constants of the laser beam intensity and radius ; 6 the 
coefficient of radiation absorption in a medium ; t the 
time. Subscripts in, en and co refer to the initial state, 
reactor entrance and the environment; r and ax 
denote radial and axial direction. 

The case is considered when weakly damping oscil- 
lations having the frequency of w. are realized in the 
independent system (A = 0). 

3. APPROXIMATE ANALYTICAL STUDY BY 
THE PERTURBATION METHOD 

Expand the right-hand sides Ni ((3, c) into the 
Taylor series in terms of the powers of small devi- 
ations 5, = 8-0, and t2 = c-c, (It,1 << O,, 11;21 K c,) 
from the equilibrium state determined by the 
conditions 

N, (B,, c,) = 0, N,(O,, c,) = 0 at A = 0 

and restrict ourselves to the non-linear terms of the 
expansion to the third order inclusive. Then, equa- 
tions (1) will be rewritten in the form 

r>O: 
dt, 
- = a,,<,+a,,~2 dr 

+ Q@(t,, 5 *) + AF sin 017, 

7 = 0: r, = Bin-e,, t2 = tin-c,, (2) 

where a, are the coefficients of the linear trans- 
formation matrix 

3.1. Solution by the method o~slon+ varying amplitudes 
[I 11 

Restricting ourselves to the first non-linear term 
O(<, , t2) z @, ti, equations (2) will be reduced to the 
form 

+Ksin (w7+I(/) (4) 

and describe induced damped oscillations. 
When w # w. the solution of equation (4) is deter- 

mined by the amplitude h, and shift of phases 4, of 
the resultant oscillations 

5, = h, sin (o,r++,)+ksin (w7+$), 

Introduction of two unknown functions h, and 4, 
instead of one 5, in equation (4) requires that 
additional limitations of the form 

~sin(wor+$,)+h,d$cos(wor+~,)=O (6) 

should be imposed on them. Equations (4) and (6), 
after substitution of (5) into them, are solved relative 
to dh,/dr and h,(d4,/dr). As a result of averaging, 
when h, and 4, are considered constant, a system 
of the differential equations is obtained for ‘slow’ 
amplitude and phase variations 

dh, - = G,(h,,4,), dr h, $ = G,(h,,4,). 

To construct an amplitude-frequency response, the 
stationary states are considered 

G,(h,,,+,,) = 0, G,(h,s,4,,) = 0. 

The obtained stationary solutions (h,,, 4,J are 
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FIG. I, Time-variation of 5, for w = 0.80~~ (a) I .5w, (b) and amplitude-frequency response (c) for A = 0.001 
(I), 0.01 (2). 

checked for stability by the Routh-Hurwitz criterion 
[I I] and are used to calculate <, by equation (5). 

The dashed line in Figs. l(a) and (b) shows the time- 
variable deviations of < for A = 0.01. As is seen, the 
character of resultant oscillations depends on the per- 
turbation frequency. If the frequency of the effect is 
close to the frequency o0 then beats occur (Fig. 1 (a)). 
At w = I .5w, periodic oscillations of a complex shape 
are realized in the system (Fig. l(b)). In Fig. 1 the 
dashed line presents the dependence of the amplitude 
Aind = (51rnw -5,,,,)/2 of the system resultant oscil- 
lations on the frequency cu for two amplitudes of the 
outside effect. In the case of stationary oscillations 
the maximum amplitude values for the period were 
plotted. The analytical solution is seen to predict res- 
onance bursts at multiple frequencies. When w -+ CL+,, 
the amplitude Aind infinitely increases (this is, 
however, imposed due to the limited amount of the 
fed reagent). To specify the value of the amplitude 
of the induced oscillations at o = w0 and to reveal 
possible linear effects with the resonance in the vicinity 
of the natural frequency, system (2) with allowance 
for all non-linear terms of functions (3) expansion is 
studied by the multiscale method. 

3.2. Solution by the multiscale method [ 121 
Assume that 

t, = &Y, n = 0, I,2 )..., 

(p) = c(p) +2(p) + ..., (p) 
W(t I, t29 . .I 

= .,~.(~t’(t,,t*,...))exp(imo,lo). C7) 
o=co~+E~o,+~~~, F=ey,+c2y2+.... The co- 
efficients yn, n = 1, 2,. . are determined from the 
conditions of the solvability each order in terms of E. 
Having substituted expressions (7) into system (2) and 

equated the coefficients at the same powers of s, obtain 
the following differential equations for the first order 
in terms of a small parameter 

at:‘! -= 
ato 

a11t\‘l+a125:‘/- i 4 I exp (iwd. 

at:‘; -= 
ato 

a2,t(,‘1+a225::I. (8) 

The condition for problem (8) solvability yields 

Y, =o, (~;;)=(u;,~)Y, Y= Y(t,,t, ,...) 

or, otherwise 

For the second order in terms of E the solvability 
condition has the form 

For the third order in terms of E the solvability 
condition is reduced to the equation 

ay 
--KKYlY12+~AY,exp(iw2t2) =O. 
at2 

(9) 

Assume Y = (H/E) exp (io2t2), then the differential 
equation (9) is changed to 

dH 
-& +i(U-CfJo)H-K,HIH12+iK2 = 0, K2 = z. 

The stated problem may be solved by the method of 
a small parameter, when Re K, < 0, i.e. a mild form 
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of instability is realized in the system, therefore WC 
shall restrict ourselves to this case. With the help of 
scalar transformations 

v= w-w”, 

dZ 
di +iZsign ~,+(l+i!,,)ZIZl’+i?z = 0, (IO) 

where 11, = (1jrr K,/Re K,) is the system parameter 
determined by the coordinates of a stationary state 

(O,,C,L ?‘2 = h’? - 1\‘1)- J Rex, 

is the variable quantity dependent on the outside effect 
amplitude and frequency. 

As an example, consider the case of 1’ > 0. Intro- 
duce Z = /I? exp (i4?), where the new variables /r? 
and r#~?. respectively, are the amplitude of induced 
oscillations and the shift of phases. Then from equa- 
tion (IO) a system of equations is obtained 

this equation, within which (region 2) the non-unique 
forced oscillation modes are possible, while outside 
this curve (region I) the unique modes occur. For 
example, on the perturbation of the system with the 
parameter ~1, = -0.2979 (A = 0.001, curve I on Fig. 
2(b)) at each frequency the unique mode of induced 
oscillations is realized. In the case of the effect with the 
amplitude A = 0.01 on the system with the parameter 
j‘, = -5 (curve 2 in Fig. 2(b)) the phenomena is 
observed that is typical of non-linear systems-the 
stationary amplitude jump on a slow quasi-stationary 
passage of the ‘hanging’ portion of the resonance 
curve. Within the range of the effect frequency (v,, vJ, 
depending on the direction of its variation, oscillations 
that are different in amplitude and shape may be real- 
ized. The dashed line indicates virtually non-realizable 
unstable modes. 

With allowance for all the computations obtained 
the following expressions for the deviation from the 
stationary values of temperature 

and concentration 

Stationary solutions of the obtained system are deter- 
mined from the equations 

which show that the amplitude of the secondary mode 
/iZr is proportional to the cube root of the outside 
effect amplitude .v~. From equation (I I) and from 
the condition of the function D(h,,) : (aD/r3h2,) = 0 
extremum existence the equation is derived for the 
boundary of the non-uniqueness of the amplitude of 
induced oscillations on the plane ‘system parameter- 
action parameter’ in the form 

27(l+J,)‘j$+4(9+J+J.,p;+4 = 0. 

where n = r~5?~ +(w~+v)T is the phase of induced 
oscillations. 

4. NUMERICAL ANALYSIS OF THE OUTSIDE 
EFFECT ON BURNING 

Figure 2(a) presents a wedge-like curve, plotted by 

To check the results of the approximate analysis, 
problem (I) was solved on a computer by the Runge- 
Kutta method. As an example, in Figs. l(a) and (b) 
time-distribution of the deviation 5, of temperature 0 
from the stationary temperature 0, for A = 0.01 and 
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FIG. 2. Boundary of the non-uniqueness of induced oscillation modes (a) and amplitude-frequency 
responses (b) in the case of unique (I) and non-unique (2) modes of induced oscillations. 
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different w (solid lines) is prcscnted. As is seen, the 
numerical experiment confirms the character of the 
modes and the period of oscillations predicted ana- 
lytically (5). In Fig. I(c) the comparison is given of 
the amplitude-frequency responses of system (I) 
obtained by an approximate-analytical method using 
equation (5) (dashed lines) and by a numerical exper- 
iment (solid lines). As is seen, at small amplitudes 
the resonance on the natural frequency (line I) takes 
place, the increase in the outside effect amplitude leads 
to the origination of the resonance on the frequencies 
w = 0.5to,, and o = 2. Iw, (line 2) that is in agreement 
with the results of analytical studies. In this case, 
non-linear effects are observed with the growth of A, 
namely. the reduction of resonance frequencies and 
asymmetry of peaks. For the chosen parameter of 
system (I) and the effect parameters from region I of 
Fig. 2(a) the unique mode of induced oscillations is 
realized numerically (see curve I in Fig. 2(b)). Here. 
the amplitude in the vicinity of the resonance on the 
natural frequency, as has been predicted, grows in 
proportion to the cube root of the outside effect ampli- 
tude A,,, = 0.0429A. 

Thus, the results of the analytical study are in agree- 
ment with the solutions of the initial non-linear 
system. 

5. CONCLUSION 

In the non-linear approximation the effect of the 
oscillating laser radiation, selectively absorbed by the 
buffer additive, on gaseous mixture burning in the 
ideal-mixing continuous-flow reactor is investigated. 
Using the method of slowly varying amplitudes, with 
allowance for the square-law expansion terms in the 
lumped-parameter model, the dependence of the 
amplitude of induced oscillations on the frequency 
and outside effect amplitude is obtained. The res- 
onance frequencies are identified. 

Application of the model with allowance for non- 
linear terms of the expansion up to the third order 
inclusive enable to conclude that, depending on the 

parameters of burning and outside effect (amplitude 
and frequency) both hysteresis and crisis-free ampli- 
tude-frequency responses are possible in the vicinity 
of the resonance on the natural frequency. The regions 
of non-uniqueness of induced oscillations are dis- 
criminated. The amplitude of induced oscillations is 
shown to increase proportionally to the cube root of 
the outside amplitude. 

The results of analytical investigations are con- 
firmed by the experiment. 
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